Current Issue : July-September Volume : 2023 Issue Number : 3 Articles : 5 Articles
This paper pursued both the lower operating power limit and small area of on-chip rectifiers for microwave wireless power transfer (MWPT). RF–DC charge pump rectifiers can operate in the fast switching limit at a high frequency of 920 MHz even with a small stage capacitor Cin of 100 fF, which contributes to an area reduction in the on-chip rectifiers. Circuit design starts with Cin determined as small as possible, followed by the determination of switching transistors and the number of stages. Even at an extremely low input power of 1 μW, wiring resistance in RF inputs is critical. Routing of the RF inputs is designed in line with stage capacitors. Bonding pad structure also affects the lower input power limit. Ground-shielded pad design can reduce the lower limit. Various types of RF–DC charge pump rectifiers are fabricated in 65 nm CMOS. An ultra-low-power diode RF–DC charge pump rectifier with 32 stages had a lower input power limit of −31.7 dBm at an output voltage of 1.0 V. Its small silicon area of 0.011 mm2 allows RF–DC rectifiers to be integrated in sensor ICs. More advanced technology providing MIM capacitors with higher capacitance density and placing switching MOSFETs under the MIM capacitors will further reduce the area of RF–DC charge pump rectifiers, allowing them to be integrated in sensor ICs....
Carbon materials derived from natural biomaterials have received increasing attention because of their low cost, accessibility, and renewability. In this work, porous carbon (DPC) material prepared from D-fructose was used to make a DPC/Co3O4 composite microwave absorbing material. Their electromagnetic wave absorption properties were thoroughly investigated. The results show that the composition of Co3O4 nanoparticles with DPC had enhanced microwave absorption (−60 dB to −63.7 dB), reduced the frequency of the maximum reflection loss (RL) (16.9 GHz to 9.2 GHz), and had high reflection loss over a wide range of coating thicknesses (2.78–4.84 mm, highest reflection loss <−30 dB). This work provided a way for further research on the development of biomass-derived carbon as a sustainable, lightweight, high-performance microwave absorber for practical applications....
The integration of antennas in composite structures is gaining popularity with advances in wireless communications and the ever-increasing demands for efficient smart structures. Efforts are ongoing to ensure that antenna-embedded composite structures are robust and resilient to inevitable impacts, loading and other external factors that threaten the structural integrity of these structures. Undoubtedly, the in situ inspection of such structures to identify anomalies and predict failures is required. In this paper, the microwave non-destructive testing (NDT) of antenna-embedded composite structures is introduced for the first time. The objective is accomplished using a planar resonator probe operating in the UHF frequency range (~525 MHz). High-resolution images of a C-band patch antenna fabricated on an aramid paper-based honeycomb substrate and covered with a glass fiber reinforced polymer (GFRP) sheet are presented. The imaging prowess of microwave NDT and its distinct advantages in inspecting such structures are highlighted. The qualitative as well as the quantitative evaluation of the images produced by the planar resonator probe and a conventional K-band rectangular aperture probe are included. Overall, the potential utility of microwave NDT for the inspection of smart structures is demonstrated....
The paper is devoted to the problem of estimating marine current velocity from microwave radar data, one of the important tasks of sea remote sensing. We present some results of simultaneous measurements of radar scatterers velocities and sea current and wind velocities. Radar scatterers velocities were measured using a dual-polarized (VV/HH) Doppler radar operating in S/C/X bands. The experiments were carried out in the coastal zone of the Black Sea at moderate incidence angles (30–70 degrees). It was obtained that the subsurface current velocity (current in the upper layer of ten centimeters) retrieved from the Bragg component of the radar return can be used to estimate changes in marine current (a part of the sea current that is not related to the wind) at constant wind speed. The subsurface current velocity is found as a vector sum of the current velocity measured at a depth of 1 m and the wind component equal to 1–3% of the wind speed. Possibilities of estimating the current velocity from VV/HH/PD data are analyzed....
Evaporative emissions from automobiles, which mainly consist of hydrocarbons, are a major source of air pollutants. As such, prevention means are required to minimize such emissions. Evaporative emissions are collected using adsorbents, where the adsorption capacity is directly influenced by the ratio of oxygen-containing functional groups, which have high polarity. This study investigated the effect of controlling the oxygen functional group (OFG) on the hydrocarbon adsorption/desorption performance of activated carbon fiber (ACF) in adsorbents. We used microwave heating to remove OFG on the ACF surfaces. The removal of surface OFG by microwave heating was analyzed using scanning electron microscopy-energy-dispersive X-ray spectroscope (SEM-EDS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric–infrared gas analysis (TGA-IR), and X-ray photoelectron spectroscopy (XPS). According to microwave heating, textural properties were analyzed using N2/77K adsorption/desorption isotherms. The hydrocarbon adsorption/ desorption performance of the ACF was evaluated according to a modified ASTM D5228. Compared to the untreated ACF, the butane working capacity of the modified (non-polarized) ACF was increased by up to 20% (adsorption capacity 27%)....
Loading....